Information Regularized Sensor Fusion: Application to Localization With Distributed Motion Sensors
نویسندگان
چکیده
We propose the information regularization principle for fusing information from sets of identical sensors observing a target phenomenon. The principle basically proposes an importance-weighting scheme for each sensor measurement based on the mutual information based pairwise statistical similarity matrix between sensors. The principle is applied to maximum likelihood estimation and particle filter based state estimation. A demonstration of the proposed regularization scheme in centralized data fusion of dense motion detector networks for target tracking is provided. Simulations confirm that the introduction of information regularization significantly improves localization accuracy of both maximum likelihood and particle filter approaches compared to their baseline implementations. Outlier detection and sensor failure detection capabilities, as well as possible extensions of the principle to decentralized sensor fusion with communication constraints are briefly discussed.
منابع مشابه
A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملDistributed motion planning and sensor fusion for cooperative behavior of mobile robots
The paper analyzes two important issues in the design of multi-robot systems: (i) motion planning with the use of distributed algorithms, (ii) sensor fusion with the use of Extended Kalman or Particle Filtering. First, distributed gradient for motion planning of a multi-robot system is examined. The dynamic model of the multi-robot system is derived and its convergence to the desirable position...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- VLSI Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2007